ECED 3300
 Tutorial 7

Problem 1

A spherical capacitor has an inner radius a and the outer radius b and is filled with an inhomogeneous dielectric with $\epsilon(r)=\epsilon_{0} k / r^{2}$. Show that the capacitance of the capacitor is given by

$$
C=\frac{4 \pi \epsilon_{0} k}{b-a}
$$

Solution

Assume that the inner plate carries a charge $+Q$ and the outer one a charge $-Q$, respectively. Applying Gauss's law to a Gaussian sphere of a radius $r, a \leq r \leq b$, we obtain

$$
\epsilon(r) E(r) 4 \pi r^{2}=Q
$$

implying that

$$
\frac{\epsilon_{0} k}{r^{2}} 4 \pi r^{2} E(r)=Q, \Longrightarrow E(r)=\frac{Q}{4 \pi \epsilon_{0} k}
$$

It then follows that the potential drop between the plates is

$$
V=-\int d \mathbf{r} \cdot \mathbf{E}=-\int_{b}^{a} d r \frac{Q}{4 \pi \epsilon_{0} k}=\frac{Q(b-a)}{4 \pi \epsilon_{0} k}
$$

Finally, by definition,

$$
C=\frac{Q}{V}=\frac{4 \pi \epsilon_{0} k}{b-a} .
$$

Problem 2

Two point charges of the opposite signs, $Q_{1}>0$ and $Q_{2}<0$, are placed along the z-axis at the positions h_{1} and h_{2}, respectively, above a grounded conducting xy-plane, as indicated in Fig.1.
(a) Find the magnitude and direction of the force experienced by the charge Q_{2}.
(b) Determine the electrostatic energy of the system.

Solution

FIG. 1: Illustration to Problem 2
(a) The system of images consists of two charges, $-Q_{1}$ and $-Q_{2}$ placed at the positions $\left(0,0,-h_{1}\right.$ and $\left(0,0,-h_{2}\right)$, respectively. The total force on charge Q_{2} will then be,

$$
\mathbf{F}=\mathbf{a}_{z} \frac{Q_{1}\left|Q_{2}\right|}{4 \pi \epsilon_{0}\left(h_{2}-h_{1}\right)^{2}}-\mathbf{a}_{z} \frac{Q_{2}^{2}}{4 \pi \epsilon_{0}\left(2 h_{2}\right)^{2}}+\mathbf{a}_{z} \frac{Q_{1}\left|Q_{2}\right|}{4 \pi \epsilon_{0}\left(h_{2}+h_{1}\right)^{2}}
$$

where we made use of Coulomb's law and the superposition principle.
(b) The energy of the system corresponds to the energy of the system of images with the caveat that the potential below the grounded plane is always zero. Therefore,

$$
W_{E}=\frac{1}{2}\left(Q_{1} V_{1}+Q_{2} V_{2}-Q_{1} \times 0-Q_{2} \times 0\right)
$$

Using the superposition principle we can obtain the potential at the position of Q_{1} due to the other charges:

$$
V_{1}=\frac{Q_{2}}{4 \pi \epsilon_{0}\left(h_{1}-h_{2}\right)}-\frac{Q_{1}}{8 \pi \epsilon_{0} h_{1}}-\frac{Q_{2}}{4 \pi \epsilon_{0}\left(h_{1}+h_{2}\right)} .
$$

By the same token,

$$
V_{2}=\frac{Q_{1}}{4 \pi \epsilon_{0}\left(h_{1}-h_{2}\right)}-\frac{Q_{2}}{8 \pi \epsilon_{0} h_{2}}-\frac{Q_{1}}{4 \pi \epsilon_{0}\left(h_{1}+h_{2}\right)} .
$$

Thus,

$$
W_{E}=\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0}\left(h_{1}-h_{2}\right)}-\frac{Q_{1}^{2}}{16 \pi \epsilon_{0} h_{1}}-\frac{Q_{2}^{2}}{16 \pi \epsilon_{0} h_{2}}-\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0}\left(h_{1}+h_{2}\right)} .
$$

Problem 3

Two capacitor of capacitances C_{1} and C_{2} are connected in series and are connected to the source of voltage V. Determine the voltage drops across each capacitor.

Solution

Assume the sought voltage drops are V_{1} and V_{2}. Because the capacitors are connected in series, they carry identical charges such that $C_{1} V_{1}=C_{2} V_{2}$. Further, the voltage drops satisfy the equation $V_{1}+V_{2}=V$. Solving these two equations simultaneously give the answer

$$
V_{1}=\frac{C_{2} V}{C_{1}+C_{2}}, \quad V_{2}=\frac{C_{1} V}{C_{1}+C_{2}} .
$$

